Создана самая подробная карта нейронных связей в мозге человека


Коучинговая компания NEXT LEVEL начинает знакомить вас с тем, как устроен наш мозг. Для начала давайте поговорим о том, из чего состоит мозг человека.

Человеческий мозг представляет собой сложную сеть нейронов. Эти нейроны служат для строительства нервной системы. Именно с их помощью передается информация из мозга всему организму и обратно.

Вы, наверно, полагаете, что для такого сложного процесса нужно огромное число нейронов. Но сколько на самом деле нейронов в мозге человека? Раньше ученые, как один утверждали: «100 миллиардов», но недавние исследования показали, что в нашем мозге нейронов куда меньше.

Сколько нейронов в мозге человека?

По подсчетам многих ученых, мозг человека состоит из порядка 100 миллиардов нейронов (плюс-минус пара миллиардов). Именно эта цифра долгие годы приводилась в учебниках по нейробиологии и психологии. И все это время ученые считали, что этот показатель близок к истине.

Так было до тех пор, пока бразильский исследователь Сюзанна Геркулано-Хаузел не обнаружила, что эта цифра не вполне точная. Ученый поняла, что несмотря на то, что данные о 100 миллиардах нейронов упорно публикуются во многих трудах, вычислить, откуда эта магическая цифра взялась, просто невозможно. Тогда нейробилог решила провести собственное расследование, чтобы наконец узнать, сколько на самом деле нейронов в мозге человека.

Казалось бы, задача элементарная. Просто взять образец мозга, посчитать количество нейронов в этом образце, а затем чисто математически вычислить общее количество нейронов, учитывая общий объем мозга.

Что такое нейрон (нейронные связи)

В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон – это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.
Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Мозг помнит всё? Беседа с нейрофизиологом Ольгой Сварник

Название изображения

Сегодня нам доступны самые разные научные инструменты и самые передовые технологии. Человечество накопило колоссальные знания, как в естественных науках, так и в гуманитарных. Однако человеческий мозг по-прежнему остается «Священным Граалем» ученых и самой сложной, малоизученной областью. Что мешает нам изучить мозг до конца? Как работает человеческая память и действительно ли наш мозг помнит всё? Об этом и многом другом рассказала Ольга Евгеньевна Сварник — нейрофизиолог, кандидат психологических наук, старший научный сотрудник лаборатории психофизиологии им. В.Б. Швыркова Института психологии РАН.

Все мы знаем о том, что мозг – это очень сложная структура. Десятки миллиардов нейронов, триллионы синапсов…Учитывая эту сложность, насколько мы вообще способны изучить мозг и что сегодня является главным камнем преткновения в подобных исследованиях?

Мы, безусловно, можем изучать мозг. И это достаточно длительный процесс, в силу тех особенностей, о которых вы говорите: огромное количество клеток, связей, клетки все очень разные. Исследования последних десятилетий показали, что существует огромное количество типов нейронов, и чем глубже мы погружаемся в эту область, тем больше новых типов находим. Процесс исследования мозга и клеток, которые этот мозг составляют — почти бесконечный и очень интересный.

Важный вопрос — а как мозг связан с психическими процессами? Активность наших нейронов связана с тем, что делает организм. Примечательно не только то, что в мозге есть множество разных типов нейронов, но и то, что они активируются в конкретные моменты, которые являются специфическими для этих нейронов. Есть нейроны, которые будут активны, когда я рассказываю кому-то о мозге, или когда я сама продумываю, как работает мозг, или даже когда я сплю и мне снится что-то о работе мозга. Исследуя эти нейроны, мы получаем доступ к внутреннему миру человека.

Главный камень преткновения в изучении мозга — это то, что огромное количество деталей, которые мы получаем о работе мозга, почему-то не хотят укладываться в некую общепринятую теорию. И есть некоторые изменения в том, что мы понимаем под принципами работы мозга. Существует несколько разных предложений о том, что это такое — принципы работы мозга. И довольно большое число исследователей никак не могут прийти к единому мнению в этом вопросе. Деталей много, а общая картина до сих пор не сложилась. Похожую ситуацию мы можем увидеть и в других науках, например, в физике.

Ольга Евгеньевна, вы изучаете память. Расскажите подробнее об этом. Память локализована где-то в мозге или это ситуативный процесс, и у нас нет конкретной зоны памяти?

Если коротко, то да, никакой зоны памяти нет. При этом, разрушение или нарушение работы определенных зон может приводить к амнезии. Но это не одно и то же. Есть кратковременная память, есть долговременная память, есть память имплицитная, когда мы приобрели какой-то опыт, но не можем ничего об этом сказать и не можем как-то его декларировать. А есть такие виды памяти, где мы можем сказать, например, что знаем, в каком месте находится Эйфелева башня или представляем, как работают нейроны в мозге. Это всё разные аспекты явления, которое принято называть памятью. И когда мы говорим об этих проявлениях работы мозга, мы не можем сказать, что память лежит где-то в определенном месте в мозге.

Один известный пациент с амнезией по имени Генри Молисон перенес операцию по разрушению гиппокампальных структур и некоторых корковых зон, которые были связаны с гиппокампом, в итоге он потерял возможность что-либо запоминать. У него не было впечатления, что он может описывать какие-то случившиеся с ним эпизоды. Но при этом, обучение у него всё же происходило, просто он не мог декларировать эпизоды. Грубо говоря, у пациента информация об эпизодах была, но он просто не мог об этом сказать. И ведь это явление было описано за 50 лет до случая Генри Молисона. Швейцарским врачом Эдуардом Клапаредом был описан очень известный, почти анекдотичный случай. Он постоянно здоровался за руку со своей пациенткой с похожим расстройством. У женщины тоже были проблемы с приобретением новой памяти и возможностью декларировать эпизоды из жизни. Во время одного из таких приветствий врач подложил иглу в свою руку и уколол больную. Впоследствии пациентка об этом совершенно не помнила, но стала избегать рукопожатий с доктором. Получается, что этот опыт у человека всё же остался, и такой опыт мог формировать дальнейшие взаимодействия этой женщины с миром.

В 2021 г. Ольга Сварник опубликовала научно-популярную книгу «Мозг за минуту».

А можно ли сказать, что наш мозг вообще ничего не забывает, и то, что произошло однажды, остается навсегда?

В современной нейронауке тенденция такова, что проблема памяти — это прежде всего проблема доступа к ней. Дело ведь не в том, что память как-то потерялась. Если мы представим, что любой приобретённый опыт — это формирование какой-то нейронной группы, которая теперь с ним связана, то получается, что вернуться к этому опыту — значит активировать эту группу. Если мы наслаиваем всё больше и больше других нейронных групп, уходя в нашем опыте от той первоначальной группы, то получается, что мы не можем к ней вернуться за счет того, что там уже есть другие наслоения и ветви этого «дерева опыта» изрядно разрослись.

Опыты на животных показывают, что можно заактивировать ту старую группу, которая была еще до всех этих наслоений, и вернуться к тому моменту. И в этом смысле конечно можно сказать, что да, мозг действительно хранит всё, если был сложившийся опыт. Вокруг нас сейчас есть масса краткосрочных моментов, которые на какой-то короткий период тоже «фиксируются» нашим мозгом, но при этом не переходят в долговременную фазу. А вот если всё перешло уже в долговременную память, то возможность потерять такую память — это прежде всего сложность найти к ней доступ, либо другой вариант — если клетки, связанные с этой памятью, разрушены.

Как объяснить случаи, когда какой-то запах возвращает тебя к таким далеким временам, о которых ты, казалось бы, уже не помнишь, но вдруг память оживает вновь? Запах — это сфера подсознания? И как он связан с памятью?

Бо́льшая часть того, что есть в нашем мозге, работает, не выходя на уровень, который принято называть сознанием. Но это всё равно составляет наш опыт.

В плане возможности вернуться к старым нейронным группам того опыта, который был до всех наслоений, запах играет универсальную и очень интересную роль. То есть запах помогает возродить то, к чему мы сами уже не можем подобраться: в силу завязанности предыдущего опыта на множестве других вещей, с которыми мы познакомились в процессе жизни.

Почему так происходит? Ответа на этот вопрос я, честно говоря не знаю, но он давно меня интересует. Даже какая-то картинка крайне редко приводит к подобному оживлению эпизодов нашего прошлого, а запах имеет такую уникальную возможность. В художественной литературе этот феномен был многократно и красочно описан, но с научной точки зрения трудно предположить, что бы это могло быть. Почему именно запах, даже не звук, обладает такими характеристиками? Ответ на этот вопрос мне бы тоже хотелось знать.

Почему мы на долгие годы можем запомнить какие-то незначительные детали из далекого прошлого, которые, казалось бы, не несут никакой смысловой нагрузки (например, зеленые носки, увиденные на ком-то давным-давно, или пробежавшую мимо собаку)? Или здесь, как говорил Фрейд, незначительных деталей быть не может и за этим воспоминанием стоит какое-то более серьезное, спрятанное переживание?

Такие воспоминания связаны с каким-то общим состоянием организма на тот момент. Возможно, то состояние по своим эмоциональным характеристикам действительно имело большую значимость. Наверное, такая особенность нашей памяти сыграла свою роль в эволюции: организмы, которые фиксировали с помощью своих нейронов как можно больше деталей, вероятно получали большее преимущество в эволюции.

Другой аспект — это то, что состояние, столь важное на тот момент, могло возвращаться снова и снова, когда мы мысленно думали о пережитом. И вот в момент одного из таких возвратов могли добавиться эти зелёные носки или ещё что-то. Возможно, прямого отношения к той ситуации они и не имели, но наша память, спустя какое-то время, связав это и наслоив ещё что-то, «решила», что эти зелёные носки были очень важны для той ситуации. Есть разные нюансы касательно того, как наша память претерпевает разнообразные модификации с каждый реактивацией тех нейронных групп, которые лежат в её основе. Это тоже очень интересные процессы.

Получается, что по сути самым верным является именно первое воспоминание, а все остальные возвраты, воспоминания об этом моменте, которые наслоились позже, ложные? Может быть, все наши воспоминания вообще являются неверными и мало связаны с тем, что происходило на самом деле?

Очень важно сказать, что это за виды памяти. Явление переделки памяти за счет возврата к активации самой ранней нейронной группы связано всё-таки с эпизодической памятью. А семантическая память работает как бы наоборот: если мы что-то учим, например, пытаемся запомнить все столицы мира, то здесь повторение только на пользу и это нашу память укрепляет. (Под семантической памятью подразумеваются знания (например, о том, что Эйфелева башня в Париже), а не сам эпизод моего первого видения Эйфелевой башни). А вот сам эпизод, свидетелем которого мы были, имеет тенденцию видоизменяться, приобретать детали, которых не было, и терять те, что были. Многочисленные исследования показывают, что эпизодической памяти, возможно, не стоит сильно доверять. Были ли эпизоды из нашего детства именно такими, какими мы их запомнили — этот вопрос не так прост. Вполне может быть, что похожие вещи были, но выглядели совсем не так, как мы их запомнили.

Лекция Ольги Сварник «Сон и память» в БЕН РАН.

Ольга Евгеньевна, вы работаете в Институте психологии РАН, в Московском Институте психоанализа, активно ведете преподавательскую деятельность Что вас, как ученого, больше всего привлекает в нейронауке?

Как преподаватель, я рассказываю о принципах работы мозга разным студентам: от физиков до психологов. Как учёный, я исследую клетки, которые есть в мозге на самых разных уровнях: это и нейрогенетические изменения, и изменения электрической активности, а также изменения суммарной активности мозга, регистрируемые с помощью электроэнцефалограммы на людях.

Меня очень увлекает описание и исследование поведения, а также поиск некоторых общих закономерностей для людей и для животных. Мои исследования показывают, что процесс приобретения какого-то опыта (когда организм сталкивается с какой-то новой для него ситуацией) приводит к тому, что у нас, прежде всего, реактивируются те нейронные группы, которые связаны с чем-то похожим: уже имеющимся предыдущим опытом.

Наблюдается интересная закономерность — как часто и стабильно мы, приобретая что-то новое, возвращаемся к старому. И люди, и животные, приобретя новый опыт и найдя решение для новой ситуации, уже добавив что-то новое в свой мозг, снова и снова возвращаются к старому: к ранее приобретенным формам поведения. Как будто снова и снова тестируют старую модель поведения, пытаясь убедиться, а точно ли она не работает? Ведь раньше работала? Эксперименты показывает, что люди часто даже не отдают себе в этом отчет. И вопрос о том, насколько далеко мы возвращаемся в старое и почему мы это делаем, меня сейчас занимает больше всего.

Название видео

Беседовала Янина Хужина.

Сколько нейронов в мозге

Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.

Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.

Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:

  • Рассчитывается число нервных клеток на небольшой части мозга, а затем, количество умножается пропорционально полному объему. Исследователи исходят из постулата о том, что нейроны равномерно распределены в нашем мозге.
  • Происходит растворение всех мозговых клеток. В результате получается жидкость, в составе которой можно увидеть клеточные ядра. Их можно посчитать. При этом служебные клетки, о которых мы сказали выше, не учитываются.

В результате описанных экспериментов установлено, что число нейронов в головном мозге человека — 85 миллиардов единиц. Ранее, на протяжении многих веков считалось, что нервных клеток больше, порядка 100 миллиардов.

Число нейронных связей в мозге улучшает качество жизни человека

На протяжении многих лет ученые думали, что головной мозг взрослого человека остается неизменным. Однако теперь науке точно известно: на протяжении всей жизни в нашем мозге формируются все новые и новые синапсы — контакты между нейронами или получающими их сигнал клетками другого типа. В совокупности

нейроны и синапсы формируют нейронную сеть, отдельные элементы которой постоянно контактируют между собой и обмениваются информацией.

Нейрон ответит за память

Исследователи выяснили, как эпизодическая память и ассоциации возникают на уровне одного нейрона и как…

02 июля 13:40

Именно нейронные связи помогают разным областям головного мозга передавать друг другу данные, тем самым обеспечивая жизненно важные для нас процессы: формирование памяти, продуцирование и понимание речи, управление движениями собственного тела. Когда нейронные связи нарушаются (а произойти это может в результате заболеваний, таких как болезнь Альцгеймера, или же из-за физической травмы), определенные области головного мозга теряют способность взаимодействовать между собой. Вследствие этого становится невозможным выполнение какого-либо действия, как умственного (запоминание новой информации или планирование своих действий), так и физического.

Группа исследователей под руководством Стивена Смита из Центра функциональной магнитно-резонансной томографии головного мозга Оксфордского университета решила выяснить, способно ли общее число нейронных связей в мозге каким-то образом влиять на его работу в целом. В ходе исследования ученые использовали данные, полученные в рамках Human Connectome Project

— проекта, запущенного в 2009 году. Его целью является составление своеобразной «карты» головного мозга, с помощью которой можно будет понять, какая область мозга отвечает за тот или иной процесс или заболевание, а также каким образом разные области мозга взаимодействуют друг с другом.

Уникальность работы исследовательской группы Стивена Смита заключалась в том, что ученые не концентрировали свое внимание на связях между конкретными областями мозга или на его определенных функциях, а изучали процессы в целом.

Подробнее ознакомиться с полученными данными можно в журнале Nature Neuroscience

.

В исследовании были использованы результаты магнитно-резонансной томографии 461 человека. Для каждого из них была создана «карта», на которой показывалось общее количество нейронных связей между всеми областями мозга. Кроме того, каждый участник исследования заполнял анкету, где рассказывал о своем образовании, образе жизни, состоянии здоровья, семейном положении и эмоциональном состоянии. Всего вопросы затрагивали 280 аспектов жизни человека.

Паралитик встал и пошел

Впервые в истории мужчина, обе ноги которого были парализованы в течение пяти лет, вновь обрел способность…

24 сентября 11:42

В результате работы удалось выяснить: чем большее количество нейронных связей присутствует в головном мозге человека, тем более «положительным» он является.

Люди, мозг которых был богат контактами между нейронами, как правило, получили высшее образование, не имели проблем с законом, стремились вести здоровый образ жизни, находились в хорошем психологическом состоянии и в целом демонстрировали высокий уровень удовлетворенности жизнью.

Как утверждают авторы исследования, взаимосвязь между количеством нейронных связей и качеством жизни человека была такой яркой и сильной, что сами ученые были поражены этим.

Отделу науки удалось связаться с ведущим автором работы Стивеном Смитом и поговорить с ним о деталях работы.

— Можно ли дать точное объяснение того, почему количество нейронных связей в головном мозге оказывает прямое воздействие на качество жизни человека: например, сказать, что число связей каким-то образом влияет на мозговую деятельность?

— Нет, говорить о таких причинно-следственных связях пока рано, так как все это — предмет сложного и многовариантного корреляционного анализа. Поэтому пока что мы не можем заявить, что мозг, в котором много нейронных связей, заставляет человека учиться на несколько лет дольше (или наоборот — что многолетнее обучение увеличивает количество нейронных связей).

Кстати, на данный момент действительно можно распространять причинно-следственные связи в оба направления — это можно назвать «заколдованным кругом».

— В таком случае каким образом вы собираетесь этот «заколдованный круг» разорвать?

— Та работа, которую мы проделали сейчас — сканирование головного мозга при помощи магнитно-резонансной томографии, — может показать лишь то, насколько тесно связаны между собой те или иные области мозга. Она также отражает множество других биологических факторов меньшей важности — например, демонстрирует точное количество нейронов, связывающих эти области. А вот понимание того, как эти связи влияют на поведение, умственные способности, образ жизни человека, — это основной вопрос, который стоит перед сотрудниками проекта Human Connectome Project.

Почему надо спать на боку

Чтобы очистить мозг от накопленных за день токсинов, надо спать на боку, выяснили ученые. Отдел науки…

16 августа 12:40

— Стивен, а существует ли корреляция между числом нейронных связей в головном мозге родителей и детей?

— А вот тут я могу однозначно ответить — да. Существует множество доказательств того, что количество нейронных связей, скажем так, передается по наследству. В рамках нашего проекта мы собираемся изучить это явление более глубоко. Хотя, несомненно, существуют и другие важные факторы, которые влияют на функционирование мозга и формирование нейронных связей.

— А возможно ли — хотя бы теоретически — каким-то образом повлиять на количество нейронных связей и таким образом изменить качество жизни человека?

— Об этом очень сложно говорить в общих чертах. Впрочем, существует множество примеров, когда вмешательства в функционирование головного мозга изменяли поведение человека или улучшали какие-то отдельные показатели его работы. О подобном эксперименте можно прочесть, например, в журнале Current Biology

: в статье говорится, что ученым при помощи микрополяризации (метода, позволяющего изменять состояние различных звеньев центральной нервной системы действием постоянного тока. — «Газета.Ru») удалось улучшить математические способности испытуемых.

Можно привести и другой, более простой и обыденный пример: мы же все знаем, что обучение и практика в каком-либо виде деятельности помогают улучшить выполнение этой самой деятельности.

Но ведь обучение — по определению — изменяет нейронные связи головного мозга, пусть иногда мы и не в состоянии это зафиксировать.

Что касается вашего вопроса, то проблема глобального изменения поведения или способностей человека остается масштабным и чрезвычайно интересным объектом исследования.

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Цитоархитектоника головного мозга человека организована таким образом, что более чем 10 млрд. нервных клеток, занимая относительно небольшое пространство и будучи сформированными в специализированные структуры, обеспечивают специфические функции мозга, связанные с восприятием, переработкой и проведением информации, в соответствии с которой осуществляется взаимодействие организма с внешней средой на основе высокой нейрональной специфичности и пластичности.

Основной структурной единицей нервной системы является нейрон.

Различные типы нейронов дифференцируются по величине и форме тела клетки, а также по длине и степени ветвистости ее отростков.

Клеточное тело по своим размерам варьирует очень широко — от 5 до 100 мкм в диаметре. Оно содержит следующие органеллы: ядро, митохондрии, эндоплазматический ретикулум (гладкий и шероховатый), расположенные на цистернах эндоплазматического ретикулума и в свободном пространстве рибосомы и полисомы, комплекс Гольджи и различные внутриклеточные включения (гранулы гликогена, липидные капли, скопления частиц пигмента в особых нейронах и др.), везикулы, а также лизосомы. Группы параллельно расположенных цистерн шероховатого эндоплазматического ретикулума в виде ограниченных мембраной удлиненных цистерн с прикрепленными к ним рибосомами образуют субстанцию (тельца) Ниссля (тигроидное вещество). В цитоплазме имеются также нейрофиламенты и нейротрубочки (рис. 3).

Все перечисленные ультраструктурные органеллы клетки несут определенные функции. Ядро является субстратом основных генетических процессов в клетке. Митохондрии обеспечивают энергетический обмен — в них происходит окислительное фосфорилирование, приводящее к продукции энергии в виде молекул АТФ. Эндоплазматический ретикулум с прикрепленными на его цистернах рибосомами, а также свободно расположенные рибосомы и их комплексы (полисомы) имеют отношение к белковому обмену и синтетическим процессам в клетке. Лизосомам приписывается обменно-выделительная роль. Нейротрубочки и нейрофиламенты обеспечивают транспорт внутриклеточных веществ, имеющих отношение к проведению нервного импульса. Долгое время считали, что комплекс Гольджи, состоящий из параллельно расположенных цистерн и скоплений пузырьков на их концах, выполняет неопределенные обменно-выделительные функции. Хотя об этом комплексе известно далеко не все, привлекают к себе накопленные многими исследователями данные, свидетельствующие о том, что он играет главную роль в процессах обновления клеточной мембраны и ее генетически обусловленной специализации. Известно, что в комплексе Гольджи может происходить первичная сборка специализированных участков мембраны (рецепторов), которые в виде пузырьков транспортируются к наружной клеточной оболочке и встраиваются в нее. Такие исследования были обобщены А.А.Милохиным (1983).

От тела нейрона отходят основной отросток — аксон и многочисленные ветвящиеся отростки — дендриты. Длина аксонов различных нейронов колеблется от 1 мм до почти 1 м (нервное волокно). Вблизи окончания аксон разделяется на терминали, на которых расположены синапсы, контактирующие с телом и дендритами других нейронов. Синапсы вместе с нейрофиламентами и нейротрубочками являются субстратом проведения нервного импульса.

Рис. 3. Основные ультраструктурные компоненты нейрона.

Л — лизосомы; ШЭР — шероховатый эндоплазматический ретикулум (цистерны с прикрепленными рибосомами); М — митохондрии; НФ — нейрофиламенты; НТ — нейротрубочки; P — рибосомы; П — полисомы (комплексы рибосом); КГ — комплекс Гольджи; Я — ядро; ЦЭР — цистерны эндоплазматического ретикулума; ЛГ — липидные гранулы; ЛФ — липофусцин.

Кроме нейронов, в ткани мозга имеются различные виды глиальных клеток — астроглия, олигодендроглия, микроглия. Астроглия играет большую роль в обеспечении функции нейрона и формировании реакции мозговой ткани на вредоносные воздействия (инфекция, интоксикация и др.) — принимает участие в воспалительных процессах и ликвидации их последствий (заместительный глиоз). Олигодендроглия, как известно, обеспечивает миелинизацию нервного волокна и регулирует водный обмен (дренажная глия). Функции микроглии не до конца изучены, но ее значение подчеркивается размножением этих клеток при некоторых специфических процессах (участие в формировании сенильных бляшек; существует предположение о выработке микроглиальными клетками амилоидных фибрилл и т.п.).

Особые клеточные структуры характерны для желудочковых поверхностей головного мозга и его сосудистого сплетения. Желудочковая поверхность мозга покрыта клетками эпендимы с многочисленными микроворсинками и ресничками, принимающими участие в ликворообращении; сосудистое сплетение представлено «гроздьями» ворсинок, состоящих из капилляров, покрытых эпителиальными клетками. Их основная функция связана с обменом веществ между кровью и цереброспинальной жидкостью.

Типичный синапс

состоит из пресинаптической терминали, постсинаптической области и расположенной между ними синаптической щели. Пресинаптическая терминаль является окончанием аксона. Она содержит нейрофиламенты, нейротрубочки, митохондрии и синаптические пузырьки, скопления которых видны около пресинаптической мембраны. Через последнюю переносятся содержащиеся в пузырьках нейротрансмиттеры. Постсинапс характеризуется наличием постсинаптического утолщения. Постсинаптическое утолщение представлено мембраной клетки с расположенными на ней рецепторами, входящими в структуру самой мембраны. Синапс представлен на рис. 4, а его электронно-микроскопическая картина на рис. 5.

Синапс может быть расположен на теле (соме) клетки — аксосоматический синапс, на дендрите — аксодендритный, на шипике дендрита — аксошипиковый (рис. 6) и на аксоне другой клетки — аксо-аксональный. Аксошипиковые синапсы несколько отличаются по своему строению от типичного синапса, что определяется строением шипика, имеющего в составе постсинапса особый шипиковый аппарат.

Взаимодействие пресинапса и постсинапса обеспечивается благодаря переносу нейротрансмиттера через синаптическую щель. Выделяясь из пресинапса, нейротрансмиттер (медиатор) может связываться с рецептором постсинаптической мембраны, инактивироваться в синаптической щели и частично вновь захватываться пресинаптической мембраной (процесс обратного захвата — reuptake). Если рецептор постсинаптической мембраны заблокирован, то возможны оба последних процесса, а также избыточное накопление медиатора и связанное с этим развитие гиперчувствительности рецепторов (см. рис. 4).

Более подробно эти процессы рассматриваются в разделе «Нейрохимические системы мозга».

Рецепторы

нейронов — это белковые структуры, расположенные на внешней поверхности мембраны клеток. Они способны «распознавать» и связывать биологически активные вещества — нейротрансмиттеры, различные эндогенные вещества, а также экзогенные соединения, в том числе психофармакологические средства. Соединения, которые могут связывать рецепторы, называются
лигандами.
Лиганды бывают
эндогенными
и
экзогенными.
Распознавание лиганда рецептором обеспечивается специальными структурными элементами, или сайтами. Специфичность связывания лиганда происходит благодаря структурному соответствию молекул лиганда и рецептора, когда они подходят друг к другу по типу «ключ к замку». Реакция связывания является моментом запуска каскада внутриклеточных реакций, приводящих к изменению функционального состояния нейрона. В зависимости от «силы» и «прочности» связывания лиганда с рецептором употребляют понятие аффинности

(сродства) лиганда по отношению к рецептору.

При связывании рецептора с лигандом может происходить как активация, так и блокада рецептора. В связи с этим говорят об агонистах

и
антагонистах рецепторов,
а также о
частичных агонистах
(рис. 7).

Максимальную эффективность в отношении активации рецептора имеет полный агонист,

минимальную (практически нулевую) — антагонист. Между ними находятся вещества, называемые частичными агонистами. Последние действуют значительно мягче, чем полные агонисты. Частичные агонисты, кроме того, занимая определенное пространственное положение в молекуле рецептора, могут предотвращать избыточное действие полного агониста, т.е. действуют частично как антагонисты. В этом случае употребляют понятие
агонист/антагонист.
Высокой аффинностью могут обладать как агонисты, так и антагонисты рецептора. Агонист активирует рецептор, вызывая соответствующий физиологический эффект, в то время как антагонист, связываясь с рецептором, блокирует его и предотвращает развитие физиологического эффекта, выявляемого агонистами. Примером антагонистов могут служить нейролептики, которые предотвращают эффекты дофамина на уровне дофаминового рецептора.

При связывании лиганда с рецептором происходит изменение конфигурации последнего (рис. 7).

Многие вещества, как эндогенные, так и экзогенные, реагируют не с одним, а с несколькими типами рецепторов — «семейством» их, которое подразделяется на отдельные типы. Примером могут служить многие нейротрансмиттеры, реагирующие с несколькими типами специфических рецепторов (например, Д1—Д5-типы дофаминовых рецепторов). Существование нескольких рецепторов к одному лиганду носит название гетерогенности рецепторов.

Представление о функции рецепторов было бы неполным, если не представить внутриклеточные процессы, развивающиеся после связывания рецептора соответствующим веществом, и механизмы, обеспечивающие трансформацию внешнего сигнала в процессы, приводящие к появлению нервного импульса. Связывание лиганда с рецептором может приводить либо непосредственно к открытию (или закрытию) соответствующих ионных каналов (см. рис. 7), либо к активации вторичных мессенджерных систем

(в качестве первичного мессенджера рассматривается вещество, реагирующее с рецептором).

Первые упоминания о вторичных мессенджерных системах появились в связи с работами E.Sutherland и соавт. (1950), которые показали, что адреналин стимулирует гликогенез путем увеличения концентрации циклического аденозинмонофосфата (цАМФ) в клетке. Оказалось, что этот вторичный мессенджер опосредует и другие клеточные реакции. В дальнейшем была выявлена связь действия цАМФ с активацией белковых киназ — ферментов, фосфорилирующих белки, что приводит к изменению их структуры и активности.

Позднее были открыты и другие вторичные мессенджеры. Сейчас выделяют среди них 3 класса: 1) циклические нуклеотиды (цАМФ, циклический гуанозинмонофосфат — цГМФ); 2) ионы кальция (Са2+); 3) метаболиты фосфолипидов — инозитол-1,4,5-трифосфат (1Р3), диглицерин (ДАГ), арахидоновую кислоту. В отличие от других вторичных мессенджеров Са2+ транспортируется в нейрон из внутриклеточного пространства.

Мембраны нейрона содержат специализированные трансмембранные белки, которые формируют ионные каналы не только для Са2+, но и для других ионов, концентрация которых по обе стороны мембраны влияет на изменение мембранного потенциала. Происходят поляризация и деполяризация мембраны, т.е. изменение трансмембранного потенциала. Наибольшее значение в этих процессах имеют ионные каналы для натрия (Na+), калия (К+), хлора (С1-) и кальция (Са2+).

Виды нейронов и нейронных связей

Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.

Вид нейронной клеткиЗа что отвечает
АффекторныеЯвляются переносчиками информации от органов чувств в головной мозг. У этого вида нейронов самые длинные аксоны. Импульс из вне поступает по аксонам строго в определенный участок головного мозга, звук — в слуховой «отсек», запах – в «обонятельный» и т.д.
ПромежуточныеПромежуточные нервные клетки обрабатывают сведения, поступившие от аффекторных нейронов и передают ее периферическим органам и мышцам.
ЭффекторныеНа заключительном этапе в дело вступают эфференты, которые доводят команду промежуточных нейронов до мышц и других органов тела.

Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.

Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?

Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.

Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.

Функции нейронов

Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.

Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.

Функция распространения информации

Данная функция:

  • является основной;
  • изучена лучше остальных.

Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.

По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.

Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.

До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.

Функция аккумуляции знаний (сохранения опыта)

Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.

Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.

Функция интеграции

Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.

Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.

Функция производства белков

Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.

Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:

  • Серотонин – вещество, вызывающее радость и удовольствие.
  • Допамин – ведущий источник бодрости и счастья для человека. Активизирует физическую активность, помогает проснуться, переизбыток может привести к состоянию эйфории.
  • Норадреналин – это «плохой» гормон, вызывающий приступы ярости и гнева. Наряду с кортизолом его называют гормоном стресса.
  • Глутамат – вещество, отвечающие за хранение памяти.

Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.

Основы развития мозга

За последние несколько десятилетий были достигнуты значительные успехи в нашем понимании основных этапов и механизмов развития мозга млекопитающих. Исследования, касающиеся нейробиологии развития мозга, охватывают уровни организации мозга от макроанатомических, до клеточных и молекулярных. Эти знания обеспечивают картину развития мозга как продукта сложной серии динамических и адаптивных процессов, работающих в условиях ограниченного, генетически организованного, но постоянно меняющегося контекста.

Развитие человеческого мозга — это длительный процесс, который начинается на третьей неделе гестации (GW) с дифференциации нейронных клеток-предшественников и распространяется, по крайней мере, в течение позднего подросткового возраста, возможно, на протяжении всей жизни. Процессы, которые способствуют развитию мозга, варьируютс от молекулярных событий экспрессии генов до воздействия на развивающийся мозг окружающей среды. Эти очень разные уровни и виды процессов взаимодействуют между собой , чтобы поддержать продолжающуюся серию событий, которые определяют развитие мозга. Как экспрессия генов, так и воздействие на мозг окружающей среды необходимы для нормального развития мозга, а нарушение любого из них может кардинально изменить результаты развития нервной системы. Но ни гены, ни влияния среды не являются предписывающими или определяющими этот результат. Скорее развитие мозга точно характеризуется, как сложный ряд динамических и адаптивных процессов, которые действуют на протяжении всего процесса развития, чтобы способствовать возникновению и дифференциации новых нейронных структур и функций.

К концу эмбрионального периода ( конец эмбрионального периода — GW8) рудиментарные структуры мозга и центральной нервной системы уже определены и основные «отсеки» центральной и периферической нервной системы сформированы. Последующий период развития плода продолжается до конца беременности. За это время происходит быстрый рост и развитие как корковых, так и подкорковых структур, включая зачатки основных путей ( трактов) волокон. Изменения в общей морфологии пренатальной нейронной системы подкрепляются изменениями, происходящими на клеточном уровне. Продукция нейронов у людей начинается с эмбрионального дня 42 (E42), то есть после 42 дня с момента зачатия. При этом нейроны мигрируют в разные области мозга, где начинают связываться между собой, создавая рудиментарные нейронные сети. К концу пренатального периода основные пути волокон, включая таламокортикальный путь, завершены.

Развитие мозга продолжается в течение длительного периода времени. Мозг увеличивается в четыре раза в дошкольный период, достигая примерно 90% взрослого объема в возрасте до 6 лет. Но структурные изменения в основных отделениях серого и белого вещества ( материи ) продолжаются в детском и подростковом возрасте, и эти изменения в структуре параллельных изменений и функциональной организации, отражаются на поведении детей и подростков. В раннем послеродовом периоде уровень связности нейронов во всем развивающемся мозге намного превышает уровень взаимодействия нейронов у взрослых (Innocenti, Price 2005 ). Эта интнсивная связь постепенно слабеет в своей выраженности вследсвие конкурентных процессов, на которые влияет опыт организма человека. Ранние процессы, зависящие от опыта, лежат в основе пластичности и способности к адаптации, что является отличительной чертой раннего развития мозга.

Прежде чем говорить о развитии мозга стоит коснуться некоторых понятий, в частности , из области генетики. Гены — это материальная субстанция, которая передается от поколения к поколению между поколениями. Гены содержатся в нуклеотидных последовательностях ДНК ( DNA), которые находятся в ядре каждой клетки в организме. Экспрессия гена имеет один результат: получение белковой молекулы. Эти молекулярные продукты экспрессии генов необходимы для всех аспектов развития. Гены обеспечивают шаблон для производства белков, и именно белки являются активными агентами в биологическом развитии. Таким образом, несмотря на то, что гены содержат информацию, которая необходима для развития и функционирования биологического организма, гены являются в основном инертными молекулами. Гены не могут напрямую участвовать в биологических процессах. Скорее, существует косвенная связь между информацией в гене и результатом развития. Информация в генных последовательностях должна быть экстрадирована, перекодирована и переведена в белки. Именно белки входят в сложные интерактивные сигнальные каскады, которые обычно включают в себя множество генных продуктов, а также влияние окружающей среды. Таким образом, конкретный продукт гена является одним из многих важных элементов, которые взаимодействуют для поддержки и руководства сложным процессом развития мозга.

Скажем несколько слов об организации зрелого мозга человека. Человеческий мозг, возможно, является самым сложным из всех биологических систем. Зрелый мозг состоит из более чем 100 миллиардов нейронов (Pakkenberg , Gundersen 1997 ). По сути, нейроны — это клетки обработки информации в мозге. Существует множество различных типов нейронов, которые отличаются по своим размерам и форме, а также по своим функциям. Нейроны образуют связи между собой, чтобы сформировать сети обработки информации, которые отвечают за все наши мысли, ощущения, чувства и действия. Поскольку каждый нейрон может устанавливать связи с более чем 1000 другими нейронами, взрослый мозг, по оценкам исследователй, имеет более 60 триллионов соединений нейронов. Точка связи между двумя нейронами называется синапсом.

Зрелый человеческий мозг имеет характерную структуру борозд и извилин. Считается, что сферическая форма зрелого мозга является адаптацией к резкому росту размеров мозга в ходе эволюции. «Складывание» мозговой ткани позволяло сравнительно крупному мозгу входить в сравнительно небольшие черепные своды, которые должны были оставаться небольшими, чтобы приспособиться к процессу рождения. Крупнейшие и наиболее важные сети обработки информации мозга включают неокортекс и подкорковые ядра которые передают информацию в, и из неокортекса. Неокортекс представляет собой слой клеток толщиной 2-5 мм, который лежит на поверхности мозга (слово «кора» происходит от латинского термина, означающего кору, как в коре дерева). В поперечном сечении мозга, неокортекс — тонкая, темно-серая полоска, которая следует за поверхностью мозга, как его мантия. Подкорковые ядра представляют собой кластеры нейронов, которые служат сигнальными ретрансляционными центрами, сообщающими между неокортексом и остальной частью тела, так и в качестве ретрансляторов между различными участками коры. Они расположены глубоко в мозгу ниже коры и, таким образом, называются «подкорковыми» ядрами. Поскольку и неокортекс, и подкорковые ядра содержат клеточные тела нейронов, они имеют серый вид, что и привело к появлению термина «серое вещество». Популяции нейронов связаны между собой волокнами, которые простираются от клеточных тел отдельных нейронов. Существует два вида соединительных волокон: дендриты и аксоны. Дендриты представляют собой массивы коротких волокон, которые напоминают ветви дерева; совокупности дендритов часто упоминаются в литературе , как «дендритные беседки» (dendritic arbors). Они простираются лишь на небольшое расстояние от тела клетки нейронов. Их основная функция — получать электрохимические входные сигналы от других нейронов. Аксоны являются длинными соединительными волокнами, которые простираются на большие расстояния и соединяются с другими нейронами, часто у дендритов. Аксоны действуют как «телефонные провода», поскольку они отвечают за отправку электрохимических сигналов в нейроны, расположенные в отдаленных местах. Связки отдельных аксонов из разных нейронов в одной области мозга образуют волоконные пути ( тракты) , которые распространяются и соединяются с группами нейронов в других областях мозга, образуя сети обработки информации. Аксоны «завернуты «в вещество, содержащее жиры , называемое миелином, которое, подобно изоляции на телефонном проводе, делает передачу электрохимических сигналов между областями более эффективной. Миелин выглядит белым по своему внешнему виду, поэтому волоконные пути мозга часто называют «белым веществом» или «путями белого вещества». В самом центре мозга есть ряд взаимосвязанных полостей, которые образуют желудочковые системы мозга. Вентрикулярная система заполнена жидкостью, называемой церебральной спинномозговой жидкостью, которая полностью рециркулируется несколько раз в день. Желудочковая система выполняет ряд важных функций, включая амортизацию и защиту головного мозга, удаление отходов и транспортировку гормонов и других веществ (Brodal 2010). Во время развития мозга стенки желудочков являются местом наибольшего количества нейронов. Хотя неокортекс головного мозга может быть относительно однородным по структуре , он фактически делится на структурно и функционально различные области. Эти области различаются по типам нейронов, которые они содержат, виды «входа» ( ввода) , которые они получают, и по типам соединений, которые они производят с другими областями мозга. Эти структурные различия приводят к функциональным различиям, создающим области мозга, которые специализированы для выполнения различных видов процессов.

Вновь теперь вернемся к теме данной статьи , то есть к основам развития мозга. У людей эмбриональный период начинается с зачатия и распространяется через GW8. К концу эмбрионального периода уже определены рудиментарные структуры головного мозга и центральной нервной системы и сформированы основные отделы центральной и периферической нервной системы. Ранний период эмбриона, который продолжается примерно до середины беременности, является критическим периодом в развитии неокортекса. К этому времени генерируется большинство кортикальных нейронов, и многие из них уже мигрировали на свои позиции в неокортексе и начали , используя основные сети мозга обрабатывать информацию.

В конце второй недели после зачатия эмбрион представляет собой простую, овальную, двухслойную структуру. Представляет интерес обзор основных пространственных размеров эмбриона на «эмбриональный день» 13 (E13) причем в течение периода эмбрионального периода развития он часто обозначается числом дней после зачатия, которое называется эмбриональным днем, поэтому гаструляция начинается с эмбрионального дня 13 ( E13). Каждый из двух слоев содержит очень примитивный тип клеток. Верхний слой содержит клетки эпибласта, а нижний слой содержит клетки гипобласта . К концу третьей недели эмбрион трансформируется с помощью ряда процессов, которые в совокупности называются гаструлированием в трехслойную структуру. Хотя это может показаться простым изменением, трансформации клеточных линий, которые происходят во время гаструляции, создают основу для всех последующих этапов развития эмбриона. Клетки эпибласта верхнего клеточного слоя будут в дальнейшем дифференцироваться в три первичные стволовые клетки — линии, которые в конечном итоге, приведут к появлению всех структур в развивающемся эмбрионе, тогда как гипобластные клетки нижнего слоя образуют экстраэмбриональные ткани, такие как плодный компонент плаценты и соединительный стебель. Среди линий стволовых клеток, возникающих во время гаструляции, выявляются нейронные стволовые клетки. Нейронные стволовые клетки способны продуцировать все различные клетки, которые составляют мозг и центральную нервную систему, и по этой причине нейронные стволовые клетки обычно называют клетками нейронных предшественников . Основные события гастротации происходят между E13 и E20. Начало гаструляции отмечено образованием примитивной полосы и примитивного узла. Первоначальная полоса обеспечивает открытие более глубоких эмбриональных слоев. Первый шаг в процессе гаструляции сигнализируется появлением щелевидного отверстия в верхнем слое эмбриона, называемого примитивной полосой. Она обеспечивает доступ к нижним областям эмбриона. Затем подмножество клеток эпибласта отделяется от верхнего слоя эмбриона и начинает мигрировать к примитивной полосе. Когда они достигают щелевидного отверстия, они меняют направление и проходят через примитивную полосу и под верхним слоем. Затем они снова меняют направление и начинают двигаться к ростральному концу эмбриона. Ростральный конец эмбриона позднее превратится в голову ребенка. Самые ранние мигрирующие клетки будут перемещаться в самые ростральные положения эмбриона, а затем мигрирующие клетки перейдут последовательно к более каудальным областям, которые превратятся в шею и туловище тела. Мигрирующие клетки образуют два новых эмбриональных слоя. Клетки, которые образуют самый глубокий слой, будут вытеснять клетки гипопластов и формировать слой эндодермальной слой стволовых клеток, который приведет к образованию структур кишечника и дыхательных путей, в то время как клетки, которые образуют новый промежуточный слой мезодермальных стволовых клеток, приведут к образованию таких структур как мышцы, кости, хрящи и сосудистая система. Клетки, которые остаются в эпидермальном слое, превращаются в один из двух типов эктодермального слоя стволовых клеток. Эпидермальные эктодермальные стволовые клетки приведут к образованию таких структур, как кожа, ногти и потовые железы, тогда как нейроктодермальные стволовые клетки приведут к развитию головного мозга и центральной нервной системе. Нейроэктодермальные стволовые клетки являются нейронными клетками-предшественниками.

Дифференциация всех линий эмбриональных стволовых клеток связана с комплексными каскадами молекулярной сигнализации. В начале гаструляции клетки слоя эпибласта, которые будут дифференцироваться в клетки нейронных предшественников, расположены вдоль рострально-каудальной срединной линии двухслойного эмбриона. Дифференциация этих клеток в клетки нейронных предшественников является результатом комплексной молекулярной сигнализации, которая включает в себя несколько продуктов гена (т.е. белков), которые продуцируются несколькими различными популяциями эмбриональных клеток. Напомним, что в начале гаструляции клетки эпибласта начинают мигрировать в определенном направлении, а затем проходят через примитивную полоску. Поскольку подмножество клеток, которые мигрируют вдоль рострально-каудальной срединной линии эмбриона, приближается к открытию, они проходят другую структуру, называемую примитивным узлом, которая расположена на ростральном конце примитивной полосы. Примитивный узел является молекулярным сигнальным центром. Клетки примитивного узла посылают молекулярный сигнал на подмножество клеток, которые мигрируют вдоль рострально-каудальной средней линии эмбриона, и этот сигнал, в свою очередь, вызывает экспрессию генов в мигрирующих клетках. Экспрессия гена в мигрирующей клетке продуцирует белок, который секретируется в пространство между мигрирующими клетками и клетками, которые остаются в области средней линии верхнего слоя эпибласта. Секретируемый белок связывается с рецепторами на поверхности клеток в верхнем слое эмбриона и побуждает клетки эпибласта дифференцироваться в клетки нейронных предшественников.

Таким образом, в конце гаструляции клетки, расположенные вдоль средней линии верхнего слоя эмбриона, трансформируются в клетки нейронных предшественников. Дифференциация нейронных клеток-предшественников требует комплексной генетической сигнализации среди по меньшей мере трех клеточных популяций: клеток узла, мигрирующих клеток и клеток, которые станут нейронными предшественниками. Однако, на самом деле эта ранняя сигнализация представляется еще более сложной. В дополнение к продукции молекулярных сигналов, которые индуцируют мигрирующие клетки с целью продуцирования белков, в дальнейшем трансформирующихся в вышележащие эпидермальные клетки , в клетки нейронных предшественников, примитивный узел генерирует еще один набор сигналов, который изменяется в ходе гаструляции и служит для формирования основного рострального -каудального отдела эмбриональной нервной системы. Напомним, что самые ранние мигрирующие эпидермальные клетки перемещаются на самый ростральный конец эмбриона, а затем мигрирующие клетки перемещаются в более крупные каудальные места. Примитивный узел посылает сигналы всем мигрирующим клеткам, чтобы продуцировать белки, которые сигнализируют клеткам нейронных предшественников, но каждая последующая волна мигрирующих клеток также получает второй сигнал, указывающую региональную идентичность для нейронных предшественников. Таким образом, примитивный узел сигнализирует ( инициирует) раннюю миграцию эпидермальных клеток с целью получения молекулярных сигналов для клеток, находящихся в вышележащем слое, чтобы дифференцироваться в нейронные предшественники, способные продуцировать клетки, подходящие для структур переднего мозга, тогда как более поздние мигрирующие клетки сигнализируют дифференцировку нейронных предшественников, способных продуцировать клетки, подходящие для заднего мозга или спинного мозга.

Следующий важный шаг в развитии мозга включает в себя формирование первой четко определенной нервной структуры — нейронной трубки, которая образуется на третьей неделе беременности, между E20-27. Как отмечалось раннее, к концу гаструляции клетки нейронных предшественников дифференцировались и уже расположены вдоль рострально-каудальной средней линии верхнего слоя трехслойного эмбриона. Область эмбриона, содержащего клетки нейронных предшественников, называется нервной пластиной. Первым признаком развития нервной трубки является появление двух гребней, которые образуются по обе стороны нервной пластинки примерно на E21. Нервные клетки-предшественники расположены между двумя гребнями. В течение нескольких дней гребни поднимаются, складываются внутрь и сливаются, образуя полые трубки (Copp et al., 2003 ). Слияние начинается в центре развивающейся нервной трубки, а затем происходит, как в ростральном, так и в каудальном направлениях. Передние невропоры в наиболее ростральном конце нервной трубки и задние невропоры в каудальном конце, являются последними сегментами , которые закрываются на E25 и E27. Когда нервная трубка завершена, нейронные предшественники образуют один слой клеток, который соединяет центр нервной трубки, непосредственно прилегающий к его полости центром . В эмбрионе полый центр нервной трубки является цилиндрическим, как центр соломинки. Но по мере того, как мозг становится более крупным и сложным, форма полости также изменяется, в конечном итоге, формируя желудочковые системы головного мозга. Поскольку нейронные предшественники расположены в области, которая станет впоследствие желудочками, эта область называется «желудочковой зоной» (VZ). Нейронные клетки-предшественники в самой ростральной области нервной трубки будут формировать головной мозг, тогда как более каудально расположенные клетки будут формировать задний и спинной мозг.

Несмотря на то, что основная трехмерная организация эмбриона проявляется с образованием нейронной трубки, в течение следующего месяца эмбрион претерпевает быстрый рост. В конце периода нейруляции эмбрион имеет длину от 3 до 5 мм, а к концу GW8 он увеличивается до 27-31 мм, то есть в десять раз больше. В этот период форма примитивной нервной системы резко меняется. Как раз перед закрытием нервной трубки передний конец трубки начинает расширяться, образуя три первичных мозговых везикула ( пузыря) или мешочки. Самая большая часть этих эмбриональных везикул мозга называется «прозэнцефалоном» ( “prosencephalon”) , который является эмбриональным предшественником переднего мозга. Среднее везикул — это «мезэнцефалон», который является предшественником структур среднего мозга, а самым задним является «ромбэнцефалон», который в дальнейшем станет задним мозгом. Эти три сегмента далее подразделяются, и к концу эмбрионального периода присутствуют пять вторичных везикул мозга. Прозэнцефалион делится на «телеэнцефалон» и «промежуточный мозг», а ромбэнцефалон делится на метэнцефалон и миелеэнцефалон ( «metencephalon» и «myelencephalon».) Мезенцефалон больше не разделяется. Эти пять подразделений выровнены вдоль рострально-каудальной оси эмбриона и формируют основную организацию центральной нервной системы (Stiles 2008).

Трансформации общей формы эмбриона отражают более специфические изменения и в нейронном паттерне во всех областях эмбриональной нервной системы. Эти изменения отмечают начало длинного процесса развития нейронного паттерна в центральной нервной системе, который начинается в эмбриональном периоде и распространяется на многие годы. Изменения являются постепенными и следуют непрерывному курсу спецификации и уточнения (Sur and Rubenstein 2005). Образцы, возникающие в эмбриональном периоде, дают только примитивную карту возможной организации нервной системы, но она создает основу для последующих разработок. Эмбриональный паттерн влияет на все области мозга от переднего мозга через спинной мозг, так что к концу эмбрионального периода GW8 устанавливается примитивное разделение сенсомоторных областей внутри неокортекса (Bishop et al., 2002 ), основные отделения в областях диэнцефалического и среднего мозга (Nakamura et al., 2005 ; Kiecker , Lumsden, 2004 ), и определена сегментарная организация заднего мозга и спинного мозга (Lumsden and Keynes 1989 , Gavalas et al., 2003).

Зрелый неокортекс разделен на четко определенные структурно и функционально различные «области», которые дифференцируются по их клеточной организации и структурам нейронной связи.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]